
POWER OPTIMIZATION FOR EMBEDDED
SYSTEM IDLE TIME IN THE PRESENCE OF
PERIODIC INTERRUPT SERVICES

Gang Zeng, Hiroyuki Tomiyama, and Hiroaki Takada
Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya
464-8603, Japan

Abstract: Generally, there are periodic interrupt services in the real-time embedded
systems even when the system is in the idle state such as the periodic clock
tick interrupts. To minimize the idle power, power management therefore
should consider the effect of periodic interrupt services. In this paper, we deal
with this problem considering two scenarios. In case the periodic interrupt
cannot be disabled, we first model the power consumption and then propose
static and dynamic approaches for the optimal frequency selection to save idle
power. On the other hand, in case the periodic interrupt can be disabled, we
propose an approach to delay the interrupt service until the next task is
released so that the processor can stay in low power mode for longer time. The
proposed approaches are implemented in a real-time OS and its effectiveness
has been validated by theoretical calculations and actually measurements on an
embedded processor.

Key words: dynamic power management; dynamic voltage/frequency scaling; real-time
embedded systems

1. INTRODUCTION

Energy consumption has become one of the major concerns in today’s
embedded system design especially for battery-powered devices. For the
sake of dependability, in real-time systems the utilization of processor is less
than 100% even if all tasks run at WCET (worse case execution time).
Moreover, workload of each task may vary from time to time, which results
in the less average execution time than the WCET. All these factors lead to
the system idle state in which there are no tasks needed to be scheduled. It

Volume 231, Embedded System Design: Topics, Techniques and Trends, eds. A. Rettberg, Zanella, M.,
Dömer, R., Gerstlauer, A., Rammig, F., (Boston: Springer), pp. 241–254.

Zeng, G., Tomiyama, H., Takada, H, 2007, in IFIP International Federation for Information Processing,

 Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada

should be noted that even in the idle state, most real-time OS maintains a
periodic clock interrupt to synchronize the system and trace the clock events.
For example the uc/OS-II, eCOS, and Linux need a 10ms clock interrupt to
generate the system clock. Besides the period clock tick, some interrupt-
driven embedded systems such as data acquisition systems also need
periodic interrupts to activate the CPU from low power mode for data
processing. To reduce the power of the idle state, a common approach is to
transfer the processor into a low power mode. Generally, a processor can
provide multiple low power modes to deal with different system states. To
take advantages of these power control mechanisms, dynamic power
management (DPM) tries to assign the optimal low power mode according to
the predicted duration of the system idle state. As an example, Figure 1
shows the power mode transition graph for two typical embedded processors
in high-end and low-end applications, respectively. Two observations can be
derived from Fig. 1 as follows: (1) Although different processors may have
different names of low power modes, they utilize similar techniques for
power control by disabling either CPU clock or both CPU and peripheral
clocks. (2) The power mode transitions consume both time and power
overhead which are dependent on the specified low power mode and the
complexity of processors.

Run Mode

SleepMode Idle Mode

10 us

90 us

16
0 m

s

10 us

90
 us

Prun = 400 mW

Pidle = 50 mWPsleep = 0.16 mW

Normal
Mode

Stop
Mode

Wait
Mode

10 us

0.21mJ80
 u

s
0.4

8
mJ

2 us2 u
s

Pnormal = 7 - 30 mW
(1.25MHz - 20MHz)

Pwait = 3.6 - 3.9 mW
(1.25MHz - 20MHz)Pstop = 0.03 mW

(a) SA-1100 (b) M16C

Figure 1. Power mode transition for (a) Intel’s StrongARM SA-1100 processor 1 (b)
Renesas’s M16C processor.

While the SA-1100 with integrated 32-bit RISC core targets for high
performance low power application, the M16C 11 with integrated 16-bit
CISC core, on-chip ROM and RAM aims at low-end and low power
application. The SA-1100 processor provides three operation modes with
different power consumption levels, i.e., Run, Idle, and Sleep modes. The
Run mode is the normal operating mode with full functionalities and high
power consumption. In contrast, the Idle and Sleep modes are low power
modes with stopped CPU clock. Idle mode stops the CPU core clock but
enables all peripherals clock thus on- or off-chip interrupt service requests

242

Power Optimization for Embedded System Idle Time

can quickly reactivate the CPU. On the other hand, Sleep mode stops both
CPU and peripherals clock thus only hardware reset or special event can
wakeup the CPU, which requires long transition time whenever entering or
exiting the Sleep mode. Similarly, the M16C also provides three power
modes which have similar functionalities to that of the SA-1100 but with
different names. However, the time and power overhead of M16C for power
mode transition is much less than that of SA-1100. This small transition
overhead of M16C is benefited from its simple and single-chip architecture.
Actually, only one instruction is needed to transfer the processor into wait
mode.

Although the Sleep mode of SA-1100 has the lowest power consumption,
it is not suitable for the application considered in this paper. The reasons are
that (1) the transition time overhead for returning to run mode is too large to
be used in the application with short period of interrupt services; (2) the
normal interrupt service requests related to on-chip clock cannot work
properly in the Sleep mode. Therefore, the feasible low power mode that can
be used for power management of idle time with periodic interrupt services
is the idle mode.

In addition to DPM, another effective technique for power saving is
dynamic voltage/frequency scaling (DVFS), because the power consumption
of CMOS circuits is proportional to its clock frequency and its voltage
square. The DVFS tries to change the clock frequency and its corresponding
supply voltage dynamically to the lowest possible level while meeting the
task’s deadline constraint. Commonly, the voltage and frequency scaling are
accomplished by controlling a DC-DC converter and PLL (phase lock loop)
circuit, respectively. Although many high-end processors have equipped
with the DVFS capabilities, few low-end processors can dynamically change
their supply voltages such as the M16C. In contrast, most low-end
processors can still change its clock frequency by setting the divider registers.
As a result, the time overhead for frequency change is much less for a simple
processor using divider register than a complex processor using PLL. For
example, the M16C requires negligible time for frequency change. In
contrast, many commercial high-performance processors require the
transition time ranging from 189us to 3.3ms for voltage and frequency
scaling 10. For simplicity, we refer to DVFS in the following whenever
voltage and frequency or only frequency is changed during execution.

The motivation for this work stems from the fact that the power
consumption of processor in idle mode is not fixed but dependent on the
selected clock frequency before entering the idle mode 7. In general, the
higher frequency, the more power is consumed in idle mode. For example,
the PXA225 processor (an upgraded product of SA-1100 series) consumes
45mW-121mW power in idle mode which corresponds to 100MHz -

243

 Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada

400MHz frequency, respectively 7. The reason is that although the disabled
CPU cannot consume dynamic power in idle mode, the enabled peripherals
still consume power which is directly dependent on the selected clock
frequency 8. To reduce the power of idle mode we therefore expect to lower
the frequency of processor. However the lowered frequency will lead to
longer execution time for interrupt service routine (ISR), which may result in
higher total energy. Accordingly, we need to determine the optimal
frequency for the idle state with period interrupt services to save power. To
the best of our knowledge, this is the first work that addresses the problem of
selecting the optimal frequency to save power for idle time in the presence of
periodic interrupt services. The main contributions of this work are as
follows: (1) In case the periodic interrupt cannot be disabled such as the data
acquisition systems, we first model the power consumption and then propose
static and dynamic approaches to save idle power for the processors with
large or negligible DVFS overhead, respectively. (2) In case the periodic
interrupt can be disabled such as the clock tick interrupt, we propose

The rest of the paper is organized as follows. Section 2 gives related
work. Section 3 presents the power model and the proposed approaches. In
Section 4, experimental results are described. Finally, Section 5 summarizes
the paper.

2. RELATED WORK

Recently, there have been a large number of publications using DPM or
DVFS for power savings. Most DPM literatures focus on the design of
power management policies using predictive schemes or stochastic optimum
control schemes 1,4. In these schemes, they generally assume fixed power
consumption for each low power mode and their objective is to decide when
and which low power mode the devices should transfer into. In practice, an
on-chip timer interrupt is commonly employed in embedded systems to
reactivate the CPU from low power mode quickly. In this case, the on-chip
clock cannot be disabled, which results in varied power consumption in low
power mode as mentioned in Section 1.

While DPM aims to reduce power in the long idle time by transferring
the processor into low power mode; DVFS aims to save power in the short
slack time, which is generated due to the fluctuation of workload, by
lowering the processor voltage and/or frequency. Most DVFS algorithms
assume periodic tasks with known WCET and deadline. Although the
objective of DVFS is to prolong the task execution time until deadline by

244

configurable clock tick to save idle power and keep system time synchroni-
zation.

Power Optimization for Embedded System Idle Time

lowering the CPU’s voltage and frequency, the slack time cannot be
reclaimed completely. This is because the generated slack time can only be
reclaimed when there are ready tasks that can be scheduled immediately.
Moreover, the discrete frequency levels makes DVFS cannot utilize the
generated slack time completely. All these factors result in idle time even in
the DVFS enabled systems. However, most DVFS literatures ignore the idle
time process by simply assuming a low power mode with zero power 2,3 or
fixed power consumption 10 in idle time. As shown in Section 1, even in low
power mode, the power consumption is neither zero nor fixed value, which
is dependent on the on-chip clock frequency. Moreover the required time for
power mode transition may be too long to be applicable for short idle time,
which results in no power reduction in this case.

Recently, a variable scheduling timeouts method is proposed for power
savings in Linux systems by eliminating the useless tick interrupts during
system idle time 9. However a problem needed to be considered in real-time
systems is how to keep the system clock synchronization caused by tick
timer reprogramming.

3. POWER MODEL AND APPROACHES

For general low power embedded processors, we assume that the

We deal with the power saving problem of idle state in two different
cases. While in case one the periodic interrupt cannot be disabled such as the
data acquisition system, in case two the interrupt can be disabled for a
specified duration such as the clock tick interrupt.

3.1 Case one: the periodic interrupt cannot be disabled

Before modeling the power consumption of idle state with periodic
interrupt services, we give the following notations.
• M: selected system speed, i.e., 1/M full speed
• Tp (us): period of interrupt service

245

processor can provide multiple low power modes and alterable voltage/
frequency for power control. To simply the calculation, we assume
that the time and power overhead for power mode transition and voltage/
frequency scaling are fixed. As discussed earlier, for power management
of idle state with periodic interrupt services, only the low power mode
with enabled peripherals clock is considered. We assume that an idle task
is employed to implement the proposed power management in RTOS. The
idle task is scheduled to run when system enters the idle state in wnich no
tasks need to be scheduled in the ready queue.

 Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada

• Th (us): execution time of interrupt service routine at full speed
• Ts (us): execution time for low power mode setting in idle task at full

speed
• Tp (us): time overhead for power mode transition
• Ip (mA): average current during power mode transition
• Tv (us): time overhead for dynamic voltage/frequency scaling
• Iv (mA): average current during voltage/frequency scaling
• Irm (mA): the run mode average current at 1/M full speed
• Iim (mA): the idle mode average current at 1/M full speed
• Vm (V): the corresponding voltage for 1/M full speed setting

Considering the fact that different scale processors may have different
DVFS overhead as discussed in Section 1, we propose static and dynamic
approaches for processors with large or negligible DVFS overhead,
respectively.

Figure 2. Processing procedure for idle state power management.

If the processor has large DVFS time overhead, a static approach is
adopted, i.e., only once DVFS setting at the beginning of idle state for any

time to enter idle state, it first sets the optimal speed for power savings and
then enters low power mode. Otherwise, it only sets and enters the low
power mode and without any speed change when the idle task is reactivated
from low power mode by interrupt. The above processing procedure for idle

procedure, the average current and power of idle state with periodic interrupt
services can be calculated by the following equations:

p

ppimpshprmsh
idle T

ITITMTTTIMTT
I

⋅+⋅−⋅+−+⋅⋅+
=

))(()((1)

midleidle VIPower ⋅= (2)

246

continuous idle time. Specifically, the program in idle task takes corres-
ponding actions according to the current system state, if it is the first

power management is illustrated in Fig. 2. Based on the above notations and

Power Optimization for Embedded System Idle Time

Therefore, if the period of interrupt and the execution time for power
mode setting are known and fixed, time and power overhead for power mode
transition, the average current with different speed settings for run and idle
mode can be obtained from processor data manual or actual measurements,
the average current of idle state will be a function of the selected speed M
and the execution time of interrupt service Th. According to this function, the
power optimization problem can be formulated as: for a specified processor
and application with known Th, Ts, Tp, Ip, Irm, and Iim, finds the optimal M
such that the average idle current is minimal. Because the relation between
Iidle and M is linear, and the selectable speeds are limited, we can calculate
all curves of Iidle-Th with all possible speed selections, and then the one that
has the minimal average current will be the optimal speed setting.

If the processor has negligible DVFS time overhead, a dynamic approach
may save more power at the expense of two DVFS settings for each interrupt
process. The procedure is that the full speed is set at the beginning of each
interrupt service, and the slowest speed is set before entering the low power
mode each time. Its objective is to save more power by keeping the
processor in low power mode with the minimal power consumption for
longer time. In this case, the average idle current can be calculated by the
following equation:

p

vvppinvtshprsh
idle T

ITITITTTTTITT
I

⋅+⋅+⋅−−+−+⋅+
=

2)2)(()(1 (3)

where Ir1 represents the current of full speed running, and Iin represents the
current of the slowest speed in idle mode. Note that this approach is not
realistic for some complex processors with large DVFS overhead. For
example, Intel’s PXA225 requires 500us for each DVFS scaling 7; obviously
in this case, the dynamic approach is not applicable for the interrupt service
with 1 ms period.

3.2 Case two: the periodic interrupt can be disabled for
a specified duration

We assume periodic tasks with known WCET and deadline in embedded
systems, and we only discuss how to disable clock tick interrupt by using a
configurable clock tick in order to save more power during idle state. Under
the above assumptions, whenever system detects the beginning of an idle
state, it also knows the nearest releasing time of a periodic task. In this case,
the duration of the idle state is known, we therefore can disable the clock
tick for this known idle time and transfer the processor into low power mode
to save power. Note that this approach is different from general DPM in that

247

 Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada

while general DPM makes decision for power mode transition based on the
predicted duration of idle time; this approach is with known duration of idle
time. Therefore the decision for power mode transition in this approach is
straightforward.

Tick
Interrupt
Disabled

Counted
Clock

Timer 1: Clock Tick Timer

Timer 2: Wake up Timer

Timer 1 overflow signal

Wake up
Interrupt
Enabled

Timer setting procedure:
When system enters the idle state

1. Set the count value of Timer 2
 as the known duration of
 idle state
2. Disable Timer 1 interrupt
3. Start Timer 2
4. Enter low power mode

 When system returns to normal
 mode by Timer 2 interrupt
1. Update the system tick by
 adding the loss clock ticks
 to current clock ticks
2. STOP Timer 2
3. Enable Timer 1 interrupt

(a) (b)

Figure 3. Configurable clock tick and timer setting procedure.

When the clock tick interrupt is disabled during idle state, a problem that
should be considered is how to trace the original clock tick to keep system

used to count the lost ticks during idle time when the tick interrupt is
disabled. Because the original tick timer is never stopped and restarted
except disabling its interrupt requests, the system time synchronization can
be guaranteed easily. However, this approach is hardware-dependent since a
wire connection between the output of timer 1 and the input of timer 2 is

wakeup interrupt prior to the release of next task should be set to the known

(b). In conjunction with the configurable clock tick, the complete algorithm

Algorithm for idle time power management:
(assume the time overhead for power mode transition is larger than that for DVFS)
When system enters the idle state
1. Calculate the duration of idle time
2. If (the duration > the time overhead for power mode transition) then
3. enable and set the configurable clock tick as the Fig. 3
4. set the slowest speed
5. enter the low power idle mode
6. else if (the duration > the time overhead for DVFS)
7. set the slowest speed
8. end if

Figure 4. Power management algorithm when the periodic interrupt can be disabled.

248

time synchronization. To this end, another timer, as shown in Fig. 3, can be

required as shown in Fig. 3 (a). The count value of timer 2 for generating the

duration of idle state. The detailed timer setting procedure is listed in Fig. 3

for idle time power management is given in Fig. 4.

Power Optimization for Embedded System Idle Time

4. EVALUATION AND EXPERIMENTAL RESULTS

4.1 Experiment setup and measurement environment

To validate and evaluate the proposed approach, we select the OAKS16-
mini board with a M16C (M30262F8GP) embedded processor to implement
the approach. Although the processor cannot change its supply voltage, it
provides three power modes and can quickly change its clock frequencies by
setting the divider registers. We measure the processor current by inserting a
digital multimeter between the power supply and the power pin of the
processor. An oscilloscope is utilized to observe the voltage waveform of the
shunt resistor which is inserted between the power supply and the power pin
of the processor. The time and power overhead for power mode transition
are estimated by using the captured voltage waveform. Note that the above
experiments are performed separately so that the current measurements are
carried out with removed shunt resistor. The measured power results and
estimated power mode transition overhead are given in Fig.1.

Our approach has been implemented in a RTOS called TOPPERS/JSP
kernel 5 which is an open source RTOS in consistent with the ITRON 6
standard. The TOPPERS RTOS targets for real-time applications with
limited resource requirement. A configurable clock tick is implemented in
OS with default 1 ms interrupt period. The normal execution time of the
timer handler for system time updating is about 12 us at 20MHz.

4.2 Evaluation of the proposed approach when the
periodic interrupts cannot be disabled

Table. 1 summaries the measured normal and wait mode average current
under different speed settings. Note that all these measurements are
performed by executing a busy loop and the results for wait mode is
measured with clock enable but without any interrupt services.

Based on these measured parameters, and Eq. (1), we can obtain the

figure, it is clear that the optimal speed selection for minimal power
consumption is determined by the execution time of ISR. As for the 12us
interrupt service in this experiment, the optimal speed is 10MHz (1/2 full
speed). The calculated and measured results are denoted in Table 2,
respectively, where the minimal measured current is consistent with the
theoretical calculated results. We modify the ISR and reduce the execution
time of ISR to 7us, and perform the above experiments again. As can be seen
from the results given in Table 3, 5MHz (1/4 full speed) can achieve the

249

following current vs. execution time and speed curves in Fig. 5. From this

 Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada

minimal power consumption, which is also consistent with the calculated
results.

Table 1. Measured normal and wait mode average current under different speed settings
Measured current (mA) (voltage = 3V) Selectable Speeds

(1/M full speed) Normal mode: Irm Wait mode: Iim
20MHz (1/1) 10.04 1.30
10MHz (1/2) 6.35 1.26
5MHz (1/4) 4.35 1.24
2.5MHz (1/8) 3.24 1.23

1.25MHz (1/16) 2.45 1.22

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3

1 5 9 13 17 21 25 29 33 37 41 45 49

A
ve

ra
ge

 c
ur

re
nt

 (m
A

)

Execution time of interrupt service routine (us)

1/1 full speed
1/2 full speed
1/4 full speed
1/8 full speed

1/16 full speed

Figure 5. Calculated results for 1ms interrupt period: average current vs. execution time and
speed selection.

Table 2. Comparison of measured and calculated average current with Tp=1ms Th=12us
Idle state average current (mA) under periodic interrupt

service (voltage=3V, period=1ms, Th=12us)
Selected Speed
(1/M full speed) Measured current Calculated current

20MHz (1/1) 1.47 1.472
10MHz (1/2) 1.45 1.451
5MHz (1/4) 1.47 1.461
2.5MHz (1/8) 1.50 1.498

1.25MHz (1/16) 1.57 1.534

We change the interrupt period to 10ms and perform the above
calculations and measurements again. The corresponding results are given in
Table 4. As can be seen, the optimal speed is 1.25MHz (1/16full speed).

250

Power Optimization for Embedded System Idle Time

When we further prolong the interrupt period to 100ms, the results show that
the slowest speed will achieve the minimal power consumption in spite of
the variation of execution time. The reason is that for longer interrupt period,
most of time the processor stays in low power mode, thus, the average power
is dominated by the power of long idle state but not the power of short
execution state.

Experiments are also conducted to validate the proposed dynamic
approach especially for the M16C with negligible DVFS overhead. In these
experiments, the varied speeds are set at the beginning of ISR, and the
slowest speed (1/16 full speed) is set in the idle task before entering the low
power mode. The calculated results using Eq. (3) and assuming negligible

dynamic approaches are shown, respectively. As can be seen, the full speed
setting for ISR plus the slowest speed setting (1/16) for low power mode
outperforms other speed combinations in dynamic approach, and all speed
settings in static approach. Meanwhile, the actually measured result for this
case shows average current 1.39 mA which is the minimal current compared
with the measured results for static approach in Table 2. The results indicate
that the dynamic approach can further reduce the average power by 4.3%
than the optimal static approach, and achieves the maximal 11% reduction in
average power than the approach without frequency selection for idle state.

Table 3. Comparison of measured and calculated average current with Tp=1ms Th=7us
Idle state average current (mA) under periodic interrupt

service (voltage = 3V, period = 1ms, Th = 7us)
Selected Speed
(1/M full speed) Measured current Calculated current

20MHz (1/1) 1.40 1.419
10MHz (1/2) 1.38 1.389
5MHz (1/4) 1.37 1.385
2.5MHz (1/8) 1.38 1.401

1.25MHz (1/16) 1.42 1.416

Table 4. Comparison of measured and calculated average current with Tp=10ms Th=12us
Idle state average current (mA) under periodic interrupt

service (voltage=3V, period=10ms, Th=12us)
Selected Speed
(1/M full speed) Measured current Calculated current

20MHz (1/1) 1.32 1.317
10MHz (1/2) 1.28 1.279
5MHz (1/4) 1.25 1.262
2.5MHz (1/8) 1.24 1.256

1.25MHz (1/16) 1.24 1.251

251

DVFS overhead are depicted in Fig. 6 where the curves for static and

 Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

1 5 9 13 17 21 25 29 33 37 41 45 49

A
ve

ra
ge

 c
ur

re
nt

 (m
A

)

Execution time of interrupt service routine (us)

1/1 full speed
1/2 full speed
1/4 full speed
1/8 full speed

1/16 full speed
1/1 + 1/16
1/2 + 1/16
1/4 + 1/16
1/8 + 1/16

1/16 + 1/16

Figure 6. Static approach vs. dynamic approach (with 1ms interrupt period).

4.3 Evaluation of the proposed approach when clock tick
interrupts can be disabled

To evaluate the proposed configurable clock tick and idle power
management algorithm, Pillai and Shin’s DVFS scheduling algorithm called
“Cycle-conserving DVS for EDF scheduler” 2 in conjunction with the
proposed DPM algorithm are implemented in the TOPPERS/JSP kernel. The
experiment test set is presented in Table 5, and corresponding energy results
for one minute running are summarized in Table 6. As can be seen, while
DVFS can achieve significant power savings compared with full speed
running, the proposed configurable clock tick for idle state power
management can further reduce the energy by 23% in average compared
with normal DVFS without any idle state processing.

Experiment is also conducted to verify the capability of keeping system
time synchronization. We implement the configurable clock tick and the
original clock tick in RTOS, respectively, and then let them run the above
DVFS experiments for 30 minutes. Finally, we compare their system time

original clock tick precisely even if the clock tick is disable during idle time.

Table 5. Experiment task set
Task set Period (ms) WCET (ms) Actual ET (ms)
Task 1 500-2000 130 28-130
Task 2 500-3000 245 38-245

252

after running. The results show no difference between the two imple-
mentations, which indicates the configurable clock tick can trace the

Power Optimization for Embedded System Idle Time

Table 6. Evaluation of power savings for combined DVFS and power management of idle
state

Dynamic EDF DVFS
with different idle state

process

P1: 500 ms
P2: 500 ms

P1: 500 ms
P2: 900 ms

P1: 1000 ms
P2: 1500 ms

P1: 2000 ms
P2: 3000 ms

No DVFS
(full speed)

TE: 1807 mJ
NR: 1

TE: 1807 mJ
NR: 1

TE: 1807 mJ
NR: 1

TE: 1807 mJ
NR: 1

DVFS without idle state
process

TE: 1594 mJ
NR: 0.88

TE: 1288 mJ
NR: 0.71

TE: 897 mJ
NR: 0.50

TE: 468 mJ
NR: 0.26

DVFS setting the lowest
speed and entering wait

mode

TE: 944 mJ
NR: 0.52

TE: 773 mJ
NR: 0.43

TE: 553 mJ
NR: 0.31

TE: 282 mJ
NR: 0.16

Note: P: task period (ms); TE: Total Energy (mJ); NR: Normalized result

5. CONCLUSION

Even in a DVFS enabled embedded system, there must exist idle time.
Moreover, a periodic interrupt services may be required in the system idle
time. As a common approach, the processor can be transferred into the low
power mode during idle time, its power consumption however is neither zero
nor fixed which is dependent on the selected clock frequency. In this work
we present different approaches for idle time power management in the
presence of periodic interrupt services. In case the periodic interrupt cannot
be disabled, we model the power consumption and propose static and
dynamic methods to achieve minimal power consumption for the processors
with large or negligible DVFS overhead, respectively. In case the periodic
interrupt can be disabled such as the periodic clock tick interrupt, we
proposed a configurable clock tick to save power by keeping the processor in
low power mode for longer time. We implement the proposed approaches in
a RTOS and a frequency scaleable embedded processor. The measured
results show that the maximal 11% power can be reduced in the first case,
and average 23% power can be further reduced in the second case compared
with DVFS without any idle processing.

ACKNOWLEDGMENTS

This work is supported by the Core Research for Evolutional Science and
Technology (CREST) project from Japan Science and Technology Agency.

253

 Gang Zeng, Hiroyuki Tomiyama, Hiroaki Takada

REFERENCES

1. L. Benini, A. Bogliolo, and G. D. Micheli, A survey of design techniques for system-level
dynamic power management, IEEE Trans. on Very Large Scale Integration Systems

2. P. Pillai and K. G. Shin, Real-time dynamic voltage scaling for low-power embedded
operating systems, Proc. ACM Symposium Operating Systems Principles, pp.89-102,
2001.

3. W. Kim, D. Shin, H. Yun, J. Kim, and S. L. Min, Performance comparison of dynamic
voltage scaling algorithms for hard real-time systems, Proc. IEEE Real-Time and

4. Z. Ren, B. H. Krogh, and R. Marculescu, Hierarchical adaptive dynamic power
management, IEEE Trans. on Computers, Vol. 54, No. 4, pp. 409-420, April 2005.

5. TOPPERS Project; http://www.toppers.jp/
6. ITRON Project; http://www.sakamura-lab.org /TRON/ITRON/
7. Intel, Application Note, PXA255 and PXA26x applications processors power

consumption during power-up, sleep, and idle, April, 2003.
8. Texas Instruments, Application Report, SPRA164, Calculation of TMS320LC54x power

dissipation, June 1997.
9. Variable scheduling timeouts (VST) project page; http://tree.celinuxforum.org/

CelfPubWiki/VariableSchedulingTimeouts
10. D. Shin and J. Kim, Intra-task voltage scheduling on DVS-enabled hard real-time

systems, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,

11. Renesas Corp; http://www.renesas.com/fmwk.jsp?cnt=m16c_family_landing.jsp&fp=
/products/ mpumcu/m16c_family/

254

(VLSI), Vol. 8, No. 3, pp. 299-316, June 2000.

Embedded Technology and Applications Symposium (RTAS), pp. 219-228, 2002.

Vol. 24, No. 10, pp. 1530-1549, Oct. 2005.

